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Polarization Diversity Active Imaging 

1. Summary 

This final report documents the second phase of the Polarization Diversity Active Imaging 

(PDAI) research program performed at the Physics department of the University of Alabama in 

Huntsville (UAH). 

Polarization Diversity Active Imaging illuminates a scene or target with a sequence of 

polarization states and then measures images of the polarization states scattered from the scene or 

target. These polarization images are then analyzed to provide additional details in the optical 

signature of objects by quantifying the object interaction with polarized light. 

The first phase of this research program has investigated the possibility to discriminate and 

identify targets from their polarization signatures. Measurements were taken on two types of targets 

(spherical and conical targets) by using the Mueller Matrix Imaging Polarimeter (MMIP, see 

Annexe A). The polarization characteristics were deduced from the polar decomposition method 

developed by S.Y. Lu and R.A. Chipman [1]. The different data sets obtained have showed an 

existing correlation between the orientation and the shape of the object and its polarization signature. 

During the second phase, we have extended our research in order to study the behavior of one of the 

previous target (brass (gold-toned) cone with rounded tip used as a re-entry vehicle model) for 

different positions of the target and positions of the detection system (polarization analyzer). The 

analysis performed for each position finally provides the dynamic behaviors of the target depending 

on either its orientation or the position of the detection system. Both cases lead to a complete 

description of the target through its polarization signature expressed in terms of depolarization, 

diattenuation and retardance properties. 

The second goal of the phase II was the development of an estimation method for 

determining the refractive index of a target from its Mueller matrix image. The method has been 
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applied on the four previous spherical targets, described in the precedent reports, and on four other 

objects (metal and glass plates). Our investigations show that the refractive index can be estimated 

either by using data resulting from the polar decomposition method or from the Mueller matrix 

image of the object after different steps of data processing. Both methods lead to the same results 

and require the resolution of the fundamental equation of Ellipsometry. 

This final report documents the following accomplishments performed during the second 

phase under our AFOSR contract: 

• Measured the Mueller matrix images of the brass cone under different orientations of the 

target and the polarization analyzer of the MMIP 

• Calculated polarization signatures of the brass cone 

• magnitude and orientation of the retardance 

• magnitude and orientation of the diattenuation 

• polarizance and depolarization index 

• horizontal-to-vertical and left-to-right crosstalks 

• Upgraded the Mueller Matrix Imaging Polarimeter with a new 16 bits CCD camera 

• Developed technique to estimate the refractive index from a Mueller matrix image 

• Calculated the refractive index for our spherical targets 

• Calculated the refractive index for four other objects 

Two important remarks must be mentioned from these different investigations: 

• Some of the polarization characteristics (diattenuation and retardance) become difficultly 

exploitable when the orientation of the object or the position of the polarization analyzer 

varies. Polarization signatures are then too noisy to recognize either the shape or the 

orientation of the object. 
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• The refractive index can not be estimated from the previous spherical targets. The small 

value of the angle of incidence does not permit a good estimation. However, refractive 

indices deduced from the other objects (estimation of the refractive index from a plane 

surface) are in agreement with values given in the literature. 

However, further investigations are necessary to comfort these results and to complete this 

work. The extension of the study using some very specific samples (calibrated in roughness and 

machined in only one material for example) will improve a lot the understanding of the polarization 

phenomena. 
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2. Movie samples obtained from the PDAI technique 

First investigations concerning the polarization signatures of spherical and conical targets 

were obtained only for a given orientation of the object under analyzed. The bistatic angle used for 

these characterizations was about 10 degrees. Such a configuration gives only a static description 

of the polarization signature of any object and can not give an estimation of how the signature will 

be for an other position of the target or the detection system. During this second phase we have 

extended the previous analyzes corresponding to a "static configuration" to a "dynamic 

configuration". This analysis was performed by using one of the targets for which the signature was 

well defined: the brass (gold-toned) cone with rounded tip. Two configurations were applied for this 

analysis. First, the object was rotated and the polarization generator and polarization analyzer of the 

MMIP were maintained in the same position. Secondly, the orientation of the object was maintained 

and the position of the polarization analyzer was changed. Both methods give similar results and 

relatively well describe the polarimetric behavior of the object as function of its position. 

2.1. Rotation of the target 

The polarization signature of the brass cone was measured for different positions of the 

target. The value of the bistatic angle was 10 degrees. The light source was a HeNe laser emitting 

at 633 nm. The brass cone was rotated from 0 degree (cone perpendicular to the laser beam) to 180 

degrees with a rotation step of 10 degrees as shown in Figure 1. For each position we have applied 

the polar decomposition onto the Mueller matrix images and observed the evolution of the following 

parameters: 

- magnitude and orientation of the retardance 

- magnitude and orientation of the diattenuation 

- horizontal-to-vertical and left-to-right crosstalk 

- polarizance and depolarization index 
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Polarization generator 

Polarization analyzer 

120°'V'  '' I *v\\   - 

140/   /   '   i   «   \   \ 
fin '   ' o' 160 180 

Figure 1: First geometry of test of the brass cone. 

The following sets of images, presented on pages 9-12, have been extracted from a movie 

generated by using for each position the polarization signatures of the brass cone. They present the 

evolution of each parameter previously mentioned for six different positions of the targets from 0 

degree to 150 degrees. Images were taken with a relatively large size (200 x 70 pixels) in order to 

have a very good definition. 

As shown on Figure 3 which represents the magnitude and orientation of the retardance, the 

signature of the object is obvious whatever its position. The orientation of the retardance describes 

perfectly the shape of the object and its orientation. For example, the orientation of the object for 

the first two positions (0° and 30°) seems to be identical when we observe only the magnitude of 

the retardance. However, from the orientation we can deduce from the first image that the right 

extremity of the cone is closest to the polarization analyzer than the tip. On the second image the 

positions of the right extremity and the tip are inverted. Orientation and shape are a little more 

described by the line graphs on Figure 2 and on Appendix B. 

From die orientation of die diattenuation (Figure 4),the orientation and the shape of the brass 

cone can be only estimated when the orientation of the target is ranged from 50 to 130 degrees. For 
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the other positions the magnitude of the diattenuation is very weak which leads for the orientation 

to a noisy pattern difficultly interpretable. 
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Figure 2: Retardance and diattenuation ligne graph images for position 60° . 

Horizontal-to-vertical and left-to-right crosstalk images (Figure 5) have also some significant 

changes according to the position of the target. The first set of images (horizontal-to-vertical 

crosstalk images) gives much more details on the orientation and shape of the object than the second 

set. 

Polarizance and depolarization index images (Figure 6) do not give so many details on the 

orientation and shape of the target. However, such parameters remain essential to estimate the 

polarizing and depolarizing power of the object. 
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Figure 3: Magnitude and orientation images of the retardance 
for different orientations of the brass cone (0°, 30°, 60°, 90°, 120°, 150°). 
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Figure 4: Magnitude and orientation images of the diattenuation 
for different orientations of the brass cone (0°, 30°, 60°, 90°, 120°, 150°). 
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Figure 5: Horizontal-to-vertical and left-to-right crosstalk images 
for different orientations of the brass cone (0°, 30°, 60°, 90°, 120°, 150°). 
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Figure 6: Polarizance and depolarization index images 
for different orientations of the brass cone (0°, 30°, 60°, 90°, 120°, 150°). 
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2.2. Rotation of the polarization analyzer 

The initial position of the polarization analyzer corresponds to a bistatic angle of 15 degrees. 

The principal axis of the cone is 10 degrees off of the direction perpendicular to the propagation 

direction of the laser beam. Measurements were taken using a rotation step of 5 degrees for the 

polarization analyzer (Figure 7). Images have a smaller resolution (150 x 50) than the previous data 

sets in order to reduce the calculation time during the data reduction process. 

3C Polarization 
analyzer     ^^y >    '■['■■ "I 

Polarization 
generator 

Figure 7: Second geometry of test of the brass cone. 

The characteristics obtained from this configuration have not a so good resolution than the 

precedent sets but the dynamic behavior of each parameter confirms those previously found. 

Retardance, diattenuation, crosstalk and polarization images corresponding to this set are presented 

in Appendix C for six distinct positions of the polarization analyzer (15°, 30°, 45°, 60°, 75°, 90°). 
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3. Estimation of the refractive index from the Mueller matrix image 

3.1 Introduction 

Numerous studies have been conducted to understand the interactions of light with dielectric 

or conducting surfaces either in reflection or refraction (transmission). This behavior is expressed 

mathematically from a set of equations called Fresnel's equations. For an air/conducting interface 

Fresnel's equations for reflection are [2]: 

n.cosö.-cosö 
r_ =  ^ ^ (la) p      n.cos6.+cos6 

r 

cos6.-n.cos0 
r   =  ! 1 (lb) 
s      cos6.+n.cos6 

i t 

where öi and 6rare the angle of incidence and the angle of refraction respectively and n the 

refractive index of the medium. For conducting media, the refractive index becomes complex and 

has the form n (1 - ik) where n is the refractive index and k the extinction coefficient. 

Although problems involving polarization in reflection and refraction are complex, they can 

be treated in a simple way by expressing the Fresnel's equations in the form of Stokes vectors and 

Mueller matrices. Both reflection and refraction lead to Mueller matrices which correspond to 

polarizing elements. Mueller matrices for reflection are directly expressed from the reflection 

coefficients which describe the amplitude and phase changes of the incident light after reflection 

onto the surface. The refractive index is then deduced by first determining the normalized reflection 

coefficient and by resolving the fundamental equation of Ellipsometry. 
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3.2. Mueller matrix for reflection 

As the reflection of a light onto a surface results in a change of amplitude and phase of the 

incident fields, the reflection coefficients rp and rs can then be expressed in terms of these changes. 

If rP and rs are defined as: 

rP = 

Rp -^ = ppExp[i.(pp] 
Ep 

(2a) 

rs = y- = PsExp[i.(j>s] (2b) 

where pp and ps represent the amplitude changes and 4>   and 4>gthe phase changes of each 

component respectively, then, we can introduce a new parameter: the normalized reflection 

coefficient | ) defined by: 

P = — = Tanf.Exp[i.A] = pflExp[i.A] 
s 

(3) 

with 
R.E,,       p„ 

Tani|r = 
R

S
E

P       Ps 

and A = V*r 

The final expression of the Mueller matrix for reflection M^ is obtained by formulating the 

equations of ellipsometry in terms of the ABCD matrix and the Stokes polarization parameters. M^ 

is than expressed from the normalized reflection coefficient p as [3]: 

M„ , = M[m„] = 
Ref L    ijJ 

PSPS 

1+Tan2i|/  1-Tan2t|r 

2,ir    ,^rr,__2. 

0 0 

1-Tanzi|f   1+Tanzl|; 0 0 

0 0 2.Tanf.cosA -2.Tanf.sinA 

0 0 2.Tan\|/.sinA 2.Tani|r.cosA 

(4) 
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3.3. Determination of Mrerfrom an experimental Mueller matrix 

Usually the Mueller matrix resulting from an experiment is given in an arbitrary coordinates 

system which does not correspond to the S-P coordinates system used to describe M^. Then 

different operations must be applied onto the experimental Mueller matrix in order to obtain M^. 

First the experimental Mueller matrix M is deduced from the Mueller matrix image of the 

surface of the object by determining an average Mueller matrix in the specular direction. In this 

direction the angle of incidence is equal to half of the value of the bistatic angle. M is then 

decomposed, by applying the polar decomposition, to a product of three matrices (depolarization, 

retardance and diattenuation matrices) in order to extract the depolarizing component. 

M = Mp.MR.MD (5) 

M
RC/ 

= VM = M
R
M

D <6> 

When the depolarization has been extracted from the average Mueller matrix, M^' must be 

rotated by an angle 6 to be expressed in the same coordinate system of M^. 

Uj = R(20).MRef.R(-20) 

MRrf = R(-28).MRe/.R(20) 

We know, from the eigen-values equation, that if we apply any incident polarization state 

in one of the eigen-directions of an element, the emergent state will have the same polarization. The 

simplest way to determine 0 is to define what incident linear polarization will emerge with a null 

ellipticity. The orientation of the incident linear polarization then gives the angle 0 representing the 

orientation of one of the eigen-directions relative to the horizontal direction (reference). In general 

the Mueller matrix resulting from the product of two non-depolarizing Mueller matrices is 
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inhomogeneous. The matrix is homogeneous only if the first two matrices have their eigen- 

directions aligned. From both cases 6 can be deduced by applying the technique previously 

described. From this assumption, 0 is determined by resolving the following relationship: 

Ellipticity [MRef' .S(9)] = 0    (S(0): linear polarization state oriented at 8) 

or 

m     + m31.cos(28) + m32.sin(20) = 0 (8) 

The solutions of this equation then give the two eigen-directions of M^'. These solutions are: 

(9) 0, „ = ArcTan 
1,2 

b^ ±4/m     +m     -m     -m 
"31 32 30 32 

m   _m 
30        31 

By applying one of these solutions in the equation (7), the form of the experimental Mueller 

matrix becomes the standard form of M^ (equation (4)). The reflection coefficient can then be 

estimated after this transformation. 

The inhomogeneity can be expressed in terms of the solutions 0i and 02 as: 

n = Cosfl^-O^) 0<r|<l (10) 

3.4. Estimation of the normalized reflection coefficient 

By applying onto the Mueller matrix M^ a horizontal linear polarization and a vertical linear 

polarization respectively, we obtain the magnitude of the normalized reflection coefficient p: 

P* = 
> 

S    +S 
OH       1H 

Pp   = 
> 

s  -s 
OV       IV (11a) 

UAH, Polarization and Lens Design Laboratory page 18 



Polarization Diversity Active Imaging 

Po = 7T 
> 

S    -S 
OV       IV 

S    +S 
OH       1H 

(lib) 

where Sov and S1V (S0H and S1H) are the first and the second components of the emergent Stokes 

vector when the incident Stokes vector is vertical (horizontal). 

In the same way, the phase shift A can be deduced by applying either a linear polarization 

at 45° or a right circular polarization: 

A = ArcTan K = ArcTan 

KJ 
(12) 

S245 and S M (S 2Rand S 3^ are the third and the fourth components of the emergent Stokes vector 

when the incident Stokes vector is linear oriented at 45° (right circular). 

In terms of the elements of the Mueller matrix M^ the normalized reflection coefficient is 

completely defined by: 

m   +m   *~ m   — m 
00 11 01 10 

m   +m   +m   +m 
00        01 10 11 

(13) 

A = ArcTan 
m      m 

32 23 

m       m 
^22 33 / 

(14) 

3.5. Estimation of the normalized reflection coefficient from the polar decomposition 

The normalized reflection coefficient can also be estimated directly from the parameters 

coming from the polar decomposition of the Mueller matrix (retardance and diattenuation). The 

application of the polar decomposition onto a Mueller matrix returns the full polarimetric 
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characterization of the medium or the element described by the matrix. As shown by the equation 

(5), The polar decomposition gives retardance diattenuation, and depolarization properties. 

Retardance represents the difference in phase accumulation between two polarization states. 

The retardance has three degrees of freedom which can be expressed as the horizontal-vertical 

retardance, the 45°-135° linear retardance and the right-left circular retardance. The diattenuation, 

which refers to the difference in attenuation between two orthogonal states, has also the same three 

degrees of freedom. The phase shift between the S and P components corresponds to the linear 

retardance RL. The change in the amplitude ratio between these two components S and P is deduced 

from the linear diattenuation DL. 

V f^\s <15> 

D = ./D
2
  +D2 (16) L      V        H 45 v     ' 

p = (l-DL).Exp[i.RL] (17) 

3.6. Determination of the refractive index from the solution of the fundamental equation of 

ellipsometry 

The solution of the fundamental equation of ellipsometry is obtained by expressing the 

Fresnel's coefficients in reflection (equation 1) from the refractive index of the medium and the 

angle of incidence 0i. The final expression for rp and rs is obtained by using the Snell's law of 

refraction. 

Sin0   = -sin8. (18) r      n       » 

Equation (3) can then be rewritten as: 
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P = 
n2cos6.-Jn2-sin20.   cos6. +Jn2-sin26. 

n 2cos6.+«/n 2-sin26.   cos6.-wn 2-sin26. 
(19) 

The resolution of the equation (19) leads finally to the solution of the fundamental equation of 

ellipsometry which expresses the refractive index n versus the normalized reflection coefficient and 

the angle of incidence: 

sino. e. i + i-p 

(l+p) 
.tan20. 

1/2 

(20) 

3.7. Precision on the estimation of the refractive index 

The determination of the refractive index is straightforward if we applied the polar 

decomposition. However, this second method does not permit us to estimate the precision onto the 

refractive index from the errors on the elements of the Mueller matrix. The first method is preferable 

because it gives the expression of the normalized reflection coefficient from the m^- coefficients. The 

precision on the refractive index can then be obtained from the error function defined by: 

e   = 
n 

> 

8n_ 
A0.+ 

8n \2 

dm. oo 
Am    + oo 

an \2 

am. 01 f 
Amoi+- 

an \2 

am 
33 

Am. 
33 

(21) 

where each derivative is deduced from the equation (20) by expressing the normalized reflection 

coefficient in terms of the m, coefficients. The terms Am., are deduced from the data resulting from 

a calibration of the Mueller matrix imaging polarimeter. 
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4. Results 

4.1. Estimation of the refractive index for the spherical targets 

The refractive index of each spherical target was estimated by using the first method 

previously described. The area from which the average Mueller matrix has been determined was not 

large enough to provide a good estimation of the refractive index. Furthermore, the bistatic angle 

for these measurement was about 10 degrees, which gives an angle of incidence of about 5 degrees. 

In these conditions the reflection coefficients rp and rs have almost the same magnitude. As the 

normalized reflection coefficient is deduced from the ratio of the reflection coefficients, a small 

variation on the magnitude of rp and rs can produce a large error on the final result. The refractive 

index obtained for each target is given on table 1. They are given only as example and must not be 

considered as good. Most of the parameters used for their determination (mainly the angle of 

incidence) were not precise enough to get a good estimation. 

Estimation of the refractive index from MRef 

Stainless steel sphere 
po = 0.9683                   A = -0.0098 rad. 

p = -0.9682 + 0.0094 I 
n = 0.531 (1 - 0.294 I) 

Ping-pong ball 
p0 = 0.9955                    A = -0.0131 rad. 
p = -0.9955 + 0.013 I 
n = 0.430 (1 - 2.936 I) 

Plastic sphere 
p0= 1.0038                    A =-0.0004 rad. 
p = -1.0038 + 0.0004 I 
n = 4.814 (1 - 0.104 I) 

Wooden sphere 
p0= 1.0335                    A = -0.0027 rad. 
p = -1.0335 + 0.0028 I 
n = 0.564 (1 - 0.079 I) 

Table 1: Refractive index of each spherical target deduced from the Mueller matrix image. 
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4.2. Estimation of the refractive index of metal and glass plates 

As shown on the precedent section, the estimation of the refractive index from the 

polarization signatures of spherical targets is not obvious when the angle of incidence is very small. 

We have extended our method in the case of object with plane surfaces in order to validate our 

estimation method. Four new objects were measured at an angle of incidence of 45 degrees 

corresponding to: 

- an aluminum plate 

- a steel plate 

- microscope slide (borosilicate glass) 

- a plexiglass plate 

The refractive index was measured from the average Mueller matrix deduced from a large 

area (see Table 2) and for each individual pixel in order to get an estimation of the variation of the 

refractive index over the surface analyzed. The average refractive index for each material is given 

on Table 2. 

Average refractive index 

Aluminum plate n = 0.388 (1 - 12.677 I)          Nb. Of pixels averaged: 500 
e„ = ±(0.013+0.1591) 

steel plate n = 1.308 (1 - 4.058 I)            Nb. Of pixels averaged: 400 
e„ = ±(0.046+0.170 I) 

plexiglass n = 1.536 (1 - 0.0101)            Nb. Of pixels averaged: 400 
e„ = ±(0.043+0.0008 I) 

Microscope slide n = 1.697 (1 - 0.006 I)            Nb. Of pixels averaged: 1200 
e„ = ±(0.049+0.0004 J) 

Table 2: Average refractive index. 
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Metal plates (aluminum and steel) are both conducting materials and thus present a high 

extinction coefficient. The value of the refractive index of aluminum for deposited film given in the 

literature is n = 1.02, k = 7.26 for A = 600 nm. The large difference between our estimation and 

the value found could be explained first by the bad optical quality of our sample and by the 

relatively large variations of the optical constants with temperature as mentioned in the reference 

used [4]. No reference has been found for the second sample (steel), furthermore steel is not a pure 

metal but a compound and such a material can have large variation of its optical constants according 

to its composition. We give here for comparison the refractive index for iron at 590 nm: n = 2.80, 

k = 3.34. 

The last two samples are transparent materials which imply, as found by the measurement, 

a null extinction coefficient. The value of the refractive index of the plexiglass given by a 

manufacturer (PLASTEC, Inc.) is n = 1.488 at 656 nm. The experimental value obtained (n = 1.536) 

is greater than we should expected but remains in agreement with the value given by the 

manufacturer. The microscope slide made of a borosilicate glass gives a refractive index of 1.697. 

The value of the refractive indices found in the literature [5] for borosilicate glasses (Bk7, BalKl, 

SK4, SSK4) are comprised between 1.51 (BK7) and 1.61 (SSK4) which is, in any case, inferior to 

the estimation of the refractive index of the microscope slide. 

The estimated refractive indices than can be used to approximate the reflection coefficients 

rp and rs using equations (la) and (lb). Table 3 gives rp and rs for the angle of incidence of 45°. 

Shown on Figure 8 are the magnitude of the reflection coefficients rp and rs deduced from the 

estimated refractive index of the aluminum plate. The magnitude of the reflection coefficients of 

the other samples are given in Appendix D. 
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Reflection coefficients rp and rs 

Aluminum plate rp = 0.81-0.511 
rs = -0.94+0.27 I 

steel plate rp = 0.78-0.42 I 
rs = -0.91+0.23 I 

plexiglass rp = 0.100-0.003 I 
rs = -0.317+0.006 I 

Microscope slide rp = 0.138+0.002 I 
rs = -0.37-0.003 I 

Table 3: Reflection coefficients rp and rs for 0; = 45°. 

Figure 8: Reflection coefficients rp (red) and rs (green) of aluminum 
versus the angle of incidence (normalized reflection coefficient in blue). 
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4.3. Dispersion of the refractive index 

The dispersion of the refractive index is determined by estimating n for each individual pixel 

of the image used to calculate the average Mueller matrix. As shown on Figure 9, The dispersion 

of the normalized reflection coefficient is relatively small but it introduces a huge dispersion on the 

refractive index. From this graph, it is obvious that an estimation of the refractive index can be 

difficulty obtained when the normalized reflection coefficient is calculated from only a few pixels. 

This also explains the difficulty we had to extract a correct value of the refractive index from the 

polarization signatures of the spherical targets. 
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Figure 9: Dispersion of the normalized reflection coefficient (Blue) and the 
refractive index (red) for aluminum. 

The dispersions obtained for each refractive index are given on Appendix C. The relative 

variations of the real and imaginary parts are defined as: 

AX = Max       Min 

X. 
(22) 

Mean 

where X^ and X,^ are the maximum and minimum values of the real and the imaginary parts of 

the refractive index. X,,,^ is the mean value of the real or imaginary part of n determined from the 

summation of the refractive index of each pixel. 

UAH, Polarization and Lens Design Laboratory page 26 



Polarization Diversity Active Imaging 

5. Conclusion 

During this second phase two aspects of the polarization have been studied. The first part 

was an extension of the first phase and concerned the study of the behavior of the polarization 

signatures according to the position either of the detection system or the target. As shown on this 

report, orientation and shape of the target can be estimated whatever its position. But such results 

must be examined on other types of targets (different in shape, metal, roughness, ...) in order to 

validate the method and estimate the ability of the technique. However, these first results show the 

strong potential of the PDAI technique for estimating orientation and shape of objects using 

polarimetry. 

The second phase of this research program has investigated a calculation method to estimate 

the refractive index from the polarization signature of the targets. Refractive index is directly 

deduced from the totally polarized part of the normalized Mueller matrix (retardance and 

diattenuation). As shown on appendix D, the calculation method gives some good estimations of the 

refractive index but the variations of the results yet remain important. The origin of this variation 

is due to the fact that tfie refractive index is determined from the normalized reflection coefficient. 

As the normalized reflection coefficient represents the ratio of the s and p reflection coefficients, 

a variation on one of this coefficient can then induce a large variation on the final result. However, 

the average refractive indices deduced from this method are in agreement with those found in the 

literature. 

UAH, Polarization and Lens Design Laboratory page 27 



Polarization Diversity Active Imaging 

6. References 

1. S.-Y. Lu and R.A. Chipman, "Interpretation of Mueller matrices based on polar 
decomposition, J. Opt. Soc. Am. A 13(5) (1996). 

2. R.M. A. Azzamand N.M. Bashara, Ellipsometry and Polarized Light, North-Holland, 
Amsterdam, (1977). 

3. E. Collett, Polarized Light: Fundamentals and Applications, Marcel Dekker, Inc., New-York 
(1993) 

4.R.A. Paquin, "Properties of Metals," in the Handbook of Optics, Chap. 35 (McGraw-Hill, New 
York, 1994). 

5. W.J. Tropf, ME. Thomas, T.J. Harris, "Properties of Crystals and Glasses," in the Handbook 
of Optics, Chap. 33 (McGraw-Hill, New York, 1994). 

UAH, Polarization and Lens Design Laboratory page 28 



Appendix A 

The Mueller Matrix Imaging Polarimeter 



Polarization Diversity Active Imaging 

The Mueller Matrix Imaging Polarimeter 

1. Principle 

The Mueller Matrix Imaging Polarimeter (MMIP) was constructed at UAH under an 

AFOSR grant issued in 1989 by program manager Lee Giles. The Mueller Matrix Imaging 

Polarimeter took three years to assemble and calibrate before accurate Mueller matrix images were 

being routinely measured, an indication of the complexity of the technique. The instrument formed 

the basis for Larry Pezzaniti's dissertation, which contains a wealth of information on the technique. 

The Mueller matrix imaging polarimeter has become the most successful instrument in the 

Polarization Laboratory and has been involved in over 30 papers. 

The Mueller Matrix Imaging Polarimeter is an accurate instrument for measuring 

polarization properties over a field of view in visible and near-infrared light. The MMIP can 

measure the polarization and polarization scrambling properties of optical elements at a high 

resolution [1]. This instrument can be configured for measurements in transmission, reflection, retro 

reflection, and variable-angle scattering. The MMEP has been used for characterization of 

polarization elements, beam splitter cubes[2], scattering surfaces [3], liquid crystal modulators[4], 

electro-optic PLZT modulators [5], GaAs waveguide devices[6], and entire optical systems. 

For Polarization Diversity Active Imaging the sample becomes a target, and the polarization 

generator and polarization analyzer are configured for bistatic scattering measurements. All of the 

polarization altering properties of the sample, the diattenuation, retardance, depolarization, and 

polarizance, may be computed from the Mueller matrix. Diattenuation refers to the difference in 

attenuation between two orthogonal polarization states (sometimes referred to as the polarizing 

efficiency), retardance is the difference in phase accumulation between two polarization states, 

depolarization is the coupling of polarized light into unpolarized light, and polarizance is the 

coupling of unpolarized light into polarized light. 
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Shown in figure 1 in its current configuration for scattering measurements, the polarimeter 

may be divided into three sections: a polarization state generator, a sample compartment, and a 

polarization state analyzer. The polarization state generator includes a spatially filtered laser whose 

coherence has been scrambled by a spinning groung glass plate in order to remove speckle effects. 

The instrument presently operates with a 633nm He-Ne 5mw laser, a 1064 nm YAG laser (200 

mW), a 543 nm 15 mW HeNe, and a 850nm 25mw diode laser, although configuring the instrument 

with a new source is straightforward. 

Laser 

Spatial 
filter 

NH 
Rotating 
diffuser 

Polarization 
Generator 

^Target a 
Rotating 

quarter-wave 
retarder 

variable 
angle 

.^Specular 
and 

Scattered 

Rotation Stage 
Controller 

Polarization 
Analyzer 

Calculate and display images of 
Mueller matrices, diattenuation, 
retardance, and depolarization. 

Rotating 
quarter-wave 

retarder 

Linear 
polarizer 
(fixed) 

Chilled 14-bit CCD, 
512 x 512 pixels 

Figure 1 Mueller Matrix Imaging Polarimeter configured for scattering measurements 

The MMIP is a dual-rotating retarder polarimeter which illuminates a sample with known 

polarized states and then analyzes the exiting polarized state over a spatially-resolved image of the 

sample. Highly calibrated polarization optics are used in the measuring instrument, and an extensive 
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calibration procedure is followed to ensure the accuracy of the measurements . Figure 1 shows the 

configuration of the MMJP in transmission. It consists of a sample compartment placed between a 

polarization state generator and a polarization state analyzer, each composed of a stationary linear 

polarizer and a rotating quarter-wave linear retarder. Images at 60 different orientations of the 

rotating retarders are used to measure a Mueller matrix image. The Mueller matrix image is 

measured by capturing the sixty different intensity images of the target. The only change between 

the images is the orientations of the retarders in the polarization generator and analyzer which 

induce an intensity change on the images. The 60 images are processed into a 16-elements Mueller 

matrix image [7] using aMathematica package of data reduction and analysis algorithm developed 

by our research group. Each Mueller matrix M is obtained according to the optimal (least-squares) 

polarimetric data reduction equation using the pseudoinverse matrix W' ~l of W where W is the 

polarimetric data reduction matrix of the polarimeter: 

-l, M  = (W 1W)"1W lI Wp'l (1) 

W is a matrix of dimension 16x60 describing the full sequence of measurements, and I is a 

measurement vector of dimension 60 representing a set of sixty intensities. 

The 4-by-4 Mueller matrix, M, relates an incident polarized state described by Stokes vector S to 

the exiting (reflected, transmitted, scattered) state with Stokes vector S : 

s' = ».' 

2 

s/ 

= MS = 

m     m     m     m 
00 01 02 03 

in     ni     m     m 
10 11 12 13 

m     m     m     m 
20 21 22 23 

m     m     m     m 
30 31 32 33 

(2) 

The Mueller matrix can be written as the multiplication of a pure depolarizing matrix, D, a pure 

retarder matrix, R, and a pure diattenuating (polarizing) matrix, P: 

M = D-R-P (3) 
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These 4-by-4 matrix images can then be decomposed into images of the depolarization, 

retardance, and diattenuation [8]. These maps give a spatially-resolved description of the 

polarization performance of the sample. 

The illuminating source for these measurements was a 5mW HeNe laser operating at a 

wavelength of 632.8nm. The target (cone) is illuminated with collimated light; the specularly 

reflected and scattered light passes through the polarization analyzer and is detected on the CCD 

array. 
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for different positions of the polarization analyzer. 
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for different positions of the polarization analyzer. 
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for different position of the polarization analyzer. 

UAH, Polarization and Lens Design Laboratory C3 



Polarization Diversity Active Imaging 

C4: Polarizance and depolarization index images 
for different positions of the polarization analyzer. 
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Dl. Aluminum plate 

Average Mueller matrix: M 

1 -0.0214 0.0005 -0.0010 

-0.0332 0.9968 0.0034 0.0023 

-0.0003 -0.0075 0.9515 0.2789 

-0.0011 0.0006 -0.2713 0.9565 

Normalized reflection coefficient: p = -0.9404 + 0.27121 

Refractive index: 0.3884 - 4.92391 

Orientation of the first eigen-direction: 
Orientation of the second eigen-direction: 
Inhomogeneity: 
Magnitude of the normalized reflection coefficient: 
Phase shift induced by the reflection: 

-0.150° 
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Figure Dl: Reflection coefficients rp (red ligne) and rs (green ligne) of aluminum 
versus the angle of incidence (normalized reflection coefficient in blue ligne). 
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Dispersion of the normalized reflection coefficient: 

-mean value of the real part: -0.9404 
- standard deviation of the real part: 0.0068 

-mean value of the imaginary part: 0.2712 
- standard deviation of the imaginary part:    0.0031 

Dispersion of the refractive index: 

- mean refractive index: 0.3866 - 4.92241 
- standard deviation of the refractive index: 0.1011 + 0.05201 

- relative variation of the real part: 164% 
- relative variation of the imaginary part:      8.45% 
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Figure D2: Dispersion of the normalized reflection coefficient (Blue) and the 
refractive index (red) for aluminum. 
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D2. Steel plate 

Average Mueller matrix: M = 

1 -0.0594 -0.0025 0.0061 

-0.0839 0.9978 0.0038 0.0071 

0.0044 0.0008 0.9518 0.2473 

0.0073 -0.0016 -0.2359 0.9540 

Normalized reflection coefficient: p = -0.9133 + 0.2315 I 

Refractive index: 1.3088 - 5.3118 I 

Orientation of the first eigen-direction: 
Orientation of the second eigen-direction: 
Inhomogeneity: 
Magnitude of the normalized reflection coefficient: 
Phase shift induced by the reflection: 

0.312° 
88.716° 
0.027 
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Figure D3: Reflection coefficients rp (red ligne) and rs (green ligne) of steel 
versus the angle of incidence (normalized reflection coefficient in blue ligne). 
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Dispersion of the normalized reflection coefficient: 

-mean value of the real part: -0.9132 
- standard deviation of the real part: 0.0066 

- mean value of the imaginary part: 0.2315 
- standard deviation of the imaginary part:    0.0069 

Dispersion of the refractive index: 

- mean refractive index: 1.3 066-5.31781 
- standard deviation of the refractive index: 0.0072 + 0.18961 

- relative variation of the real part: 32% 
- relative variation of the imaginary part: 21% 
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Figure D4: Dispersion of the normalized reflection coefficient (Blue) and the 
refractive index (red) for steel. 
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D3. Plexiglass plate 

Average Mueller matrix: M = 

1 -0.8172 -0.0037 0.0034 

0.8384 1.0049 -0.0783 0.0115 

0.0760 0.0890 0.5328 0.0087 

0.0013 0.0052 -0.0131 0.5482 

Normalized reflection coefficient: p = -0.3171 + 0.00611 

Refractive index: 1.5361 - 0.01641 

Orientation of the first eigen-direction: 
Orientation of the second eigen-direction: 
Inhomogeneity: 
Magnitude of the normalized reflection coefficient: 
Phase shift induced by the reflection: 

0.439° 
46.272° 
0.696 
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Figure D5: Reflection coefficients rp (red ligne) and rs (green ligne) of plexiglass 
versus the angle of incidence (normalized reflection coefficient in blue ligne). 
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Dispersion of the normalized reflection coefficient: 

- mean value of the real part: -0.3170 
- standard deviation of the real part: 0.0058 

- mean value of the imaginary part: 0.0061 
- standard deviation of the imaginary part:    0.0021 

Dispersion of the refractive index: 

- mean refractive index: 1.5361 - 0.01641 
- standard deviation of the refractive index: 0.0149 + 0.00171 

- relative variation of the real part: 5.5% 
- relative variation of the imaginary part: 221 % 
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Figure D6: Dispersion of the normalized reflection coefficient (Blue) and the 
refractive index (red) for plexiglass. 
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D4. Microscope slide 

Average Mueller matrix: M = 

1 -0.7587 -0.0120 0.0033 

-0.7709 0.9473 -0.0843 0.0101 

-0.0722 0.0905 0.5980 -0.0063 

0.0019 -0.0013 -0.0036 0.6100 

Normalized reflection coefficient: p = -0.3715 - 0.00311 

Refractive index: 1.6973 + 0.01011 

Orientation of the first eigen-direction: 
Orientation of the second eigen-direction: 
Inhomogeneity: 
Magnitude of the normalized reflection coefficient: 
Phase shift induced by the reflection: 

-30.012° 
3.2908° 
0.8357 
0.3715 
0.480° 
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Figure D7: Reflection coefficients rp (red ligne) and rs (green ligne) of a microscope slide 
versus the angle of incidence (normalized reflection coefficient in blue ligne). 
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Dispersion of the normalized reflection coefficient: 

-mean value of the real part: -0.3468 
- standard deviation of the real part: 0.0926 

- mean value of the imaginary part: -0.0030 
- standard deviation of the imaginary part:    0.0024 

Dispersion of the refractive index: 

- mean refractive index: 1.6513 - 0.0098 I 
- standard deviation of the refractive index: 0.1748 + 0.0028 I 

- relative variation of the real part: 46% 
- relative variation of the imaginary part: 565% 

ao4 

<X(G 

£     o 

-ao2 

-0.04 

1 T 1 ! f-    "■  1 1     "I 1  1 r——i 1 1 f 

'S 

1 fi^p • 

1 
• 

till 

i )                    0 
i         t        i         t 

5                    ] 
t           r            t           t 

I                             1 5                    2 
Heal part 

Figure D8: Dispersion of the normalized reflection coefficient (Blue) and the 
refractive index (red) for a microscope slide. 
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